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Abstract. The mechanically unstable situation of a heavy Bingham fluid resting on top of a light Bingham fluid
in an inclined closed-ended pipe can be stabilised if the fluids have sufficiently large yield stresses. This paper
focuses on determining the yield stresses that are sufficient to keep the fluids statically stable for a given fluid
density difference, pipe diameter and pipe inclination. The results are applicable to a broad class of practically
observable flows. This situation provides an idealised model for the oilfield process of plug cementing.
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1. Introduction

Many industrial fluids are characterised by a rheology that exhibits a yield stress [1], and one
of the simplest constitutive models is that of a Bingham fluid or plastic. When such a fluid fills
a pipe and is subjected to an axial pressure gradient, it flows only if a given critical pressure
gradient is exceeded. Thus, Bingham fluids are able to support nonzero deviatoric stresses
whilst at rest. The critical pressure gradient (or alternatively critical yield stress or critical
pipe diameter), may be found either by straightforward physical arguments [2], or by rigorous
analytic methods [3, pp. 78–82], [4].

Consider two Bingham fluids of differing densities(ρ̂k) and rheologies(µ̂k, τ̂k,Y ), which
are miscible, but do not mix significantly. Suppose that an inclined closed-ended pipe is filled
with both fluids, separated by a clean interface and with the heavier fluid on top of the lighter
fluid (see Figure 1). This situation is mechanically unstable. Without a yield stress in either
fluid (e.g.two Newtonian fluids), the fluids will flow in such a way as to eventually exchange
positions. The underlying cause of the unstable motion is a buoyancy force, arising from the
density difference between the fluids.

The initial condition for this type of flow includes the specification of the interface po-
sition. For two Newtonian fluids, it becomes immediately clear that there will be only one
interface configuration for which the fluids may remain static (namely an interface which lies
perpendicular to the direction of gravity), but that this interface is unconditionally unstable.
For two Bingham fluids, the static stability problem is quite different. Firstly, by analogy with
the Bingham fluid pipe flow described above, it is expected that for sufficiently large yield
stresses,̂τk,Y , the buoyancy driven flow will be stopped. Indeed, for an infinitely long pipe,
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Figure 1. An idealised fluid flow model for plug-cementing.

a simple dimensionless analysis suggests that the existence of this static situation will be
governed by the angle of inclinationβ, and the following two dimensionless groups

τc,Y = τ̂c,Y

[ρ̂c − ρ̂m]ĝD̂
, τm,Y = τ̂m,Y

[ρ̂c − ρ̂m]ĝD̂
. (1)

In (1), the two fluids are distinguished by the subscriptsc andm (c denoting the heavier fluid),
ĝ is the gravitational acceleration and̂D is the pipe diameter; (dimensional quantities are
denoted by ahat symbol,·̂, and dimensionless variables without). A second major difference
in the Bingham fluid problem is that infinitely many static interface configurations should be
possible,e.g.small perturbations from the unique Newtonian static solution should generate
correspondingly small deviatoric stresses at the interface, which small finite yield stresses are
able to resist. Finally, it is expected that the static solutions will be either conditionally or
absolutely stable, again depending on the size of the yield stresses.

The industrial interest in such flows stems from the oilfield operation of plug-cementing.
In this process, one attempts to place a heavy cement slurry above a lighter drilling mud.
Alternatively, aviscous pill fluid of intermediate density is placed between the mud and
cement. A typical lengthscale for an oil well is∼103 m and diameter∼0·3 m; lengths of the
fluid stages involved are typically>30 m. The aim is to maintain the cement slurry statically
positioned in the well for a period of many hours while it sets. Cement plugs can be used
either to hydraulically seal the well (i.e. abandonmentplug or lost-circulationplug), or as a
mechanical aid to changing the direction of the well trajectory during drilling (kick-offplug).
This process and a range of technical issues are discussed in [5–8], [9, Chapter 13], [10].
Often there are density constraints on the fluids that are used for plug cementing. However,
rheological parameters may be varied by chemical means to attain given stability design limits.
This paper attempts to define those limits.

For fixed inclination and interface, it must be expected that the two dimensionless yield
stresses (τk,Y , k = c,m), interact in determining the limit of static stability. In general the
limit is unknown and this paper considers how to estimate the limit for a class of physically
realistic fluid-fluid interfaces.
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Figure 2. A slumping exchange flow observed in an experimental rig at Schlumberger Cambridge Research (UK)
at different times after placement; density difference 1: 1·1 SG,D = 0·2 m,β = 45 degrees.

Much of the paper develops qualitative results using variational methods. These methods
are favoured here since the interface is not determineda priori in the industrial application.
Additionally, the problem of determining limiting stability states has more in common with
studies of plasticity (where such methods are more common), than with classical fluid mech-
anics. A further question is whether or not direct computation could have sensibly replaced
either the approximate results derived or the validation experiments performed. Displacement
and filling flows are modelled within many modern computational fluid mechanics software
tools and the geometry here is relatively simple. The drawback in using computational meth-
ods is in the way in which the Bingham fluid rheology is approximated for computation. For
very low rates of strain the plastic yielding behaviour is typically replaced by that of a very
viscous Newtonian fluid. This is a numerically motivated perturbation of the constitutive laws.
It has the consequence that mechanically unstable flows never cease to flow. Exactly how nu-
merical results are to be rigorously interpreted, how a zero-flow limit is to be determined and
indeed whether or not the (rheological) perturbation is itself regular in this limit are difficult
questions.

An experimental observation, when the fluid properties are such that the flow is somehow
close to the limit of not flowing, is that the heavy fluid slides down the lower side of the
pipe, displacing the lighter fluid up the higher side of the pipe. Figure 2 shows a series of still
pictures taken from a video of this motion, observed in an experimental rig at Schlumberger
Cambridge Research (UK). Such motions are also reported in [7]. This is a slumping motion
in which the bulk of the two fluids moves axially at a slow pace. The velocity field may
therefore be thought of as being near-uniaxial, except close to the two displacement fronts
where a three-dimensional flow must exist in some sort of transition region (see schematic in
Figure 3). It is also noted that although the eventual flow is observed to propagate uniaxially,
the initiation can often involve a multi-dimensional flow.

The propagating flows described above are slow stratified axial flows, generally starting
with low kinetic energies. The main aim of this paper is to derive sufficient conditions onτk,Y ,
k = c,m, such that flows which may start from fairly arbitrary initial conditions, will not
propagate axially. In the central region of Figure 3 the flow is characterised by near-uniaxial
streamlines and by there being no net volumetric flux in the direction of the pipe axis, (i.e.
the flow of the cement down the incline is matched by theexchangeflow of the mud up the
incline). Such flows have been studied both in slots [11] and in pipes/general ducts [12–13].
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Figure 3. Schematic of stratified axial flow region considered, pipe geometry, coordinates and pipe cross-sectional
notation.

The important difference between this work and [11–13] is that normal deviatoric stresses,
which are generated at the end regions of the flow, are completely ignored in [11–13], but are
included here. This makes experimental comparison possible, see Section 6.

A brief outline of the paper is as follows. Section 2 derives the dimensionless model
equations and deals with the issue of model closure. Section 3 investigates various qualit-
ative properties of the axial velocity solution. Stress minimisation principles are considered in
Section 4. Section 5 combines estimates of the normal deviatoric stresses with the results of
[13]. In doing so, a surface is derived in the three-dimensional(β, τc,Y , τm,Y )-space which
defines conditions for the axial velocity to be zero. Experimental comparison is made in
Section 6. The paper concludes with a discussion of the practical application and limitations
of this work, in Section 7.

2. Dimensionless model equations

Consider the type of slow, stratified slumping flow described in Section 1. Away from the end
regions of the flow, both fluid streamlines and fluid-fluid interfaces are assumed to be near-
parallel to the pipe axis. This intermediate flowing region is denotedV (t̂ ), and is divided into
two distinct fluid regions:Vc(t̂ ) andVm(t̂ ) (cement and mud). The incompressible Navier–
Stokes equations are valid in each fluid region with no-slip conditions on the pipe walls.
Capillarity and molecular difusion effects are assumed insignificant on the time and length-
scales considered. The interfaces are then simply advected with the flow. Velocity and stress
(traction) vectors are continuous across all fluid-fluid interfaces. The assumption is made that
the interfaces evolve in such a way that they always remain near parallel to the pipe axis, within
the volumeV (t̂ ), e.g.V (t̂ )might expand axially along the pipe in both directions,stretching
the interface in the middle,newinterface being created in the end transition regions.
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Coordinateŝx are as defined in Figure 3 and are scaled differentially in axial and nonaxial
directions. LetL̂ be an axial length-scale and̂D the pipe diameter. Spatial coordinates and
derivatives are scaled as follows

x1 = x̂1

L̂
, x2 = x̂2

D̂
, x3 = x̂3

D̂
. (2)

The ratio between̂L andD̂ is denoted1 δ

δ = D̂

L̂
� 1, (3)

The pressure and velocity are denotedp̂(x̂, t̂ ) andû(x̂, t̂ ). The stress and deviatoric stress
tensors are denoted̂σk,ij and τ̂k,ij , for k = c,m. Let û∗ denote a typical axial velocity of the
flow, which is used to scale the velocity as follows

û = û∗(u1, δu2, δu3) (4)

and to define the timescalet̂∗ ≡ L̂/û∗.
The (positive) density difference1ρ̂ is defined by1ρ̂ = ρ̂c − ρ̂m and is used to define

φc ≡ ρ̂c

1ρ̂
, φm ≡ ρ̂m

1ρ̂
= φc − 1. (5)

A dimensionless modified pressure is defined by

p(x, t) = p̂(x̂, t̂ )− p̂0+ ρ̂mĝ[x̂1 cosβ + x̂2 sin β]
1ρ̂ĝL̂

, (6)

wherep̂0 denotes a reference pressure at the origin.
For the flow to be noninertial there should exist a balance between the leading-order

deviatoric stress gradients and the buoyancy gradient

τ̂k,ij

D̂
∼ 1ρ̂ĝ. (7)

In yielded regions of the flow, the velocity and length-scales adopted imply thatτ̂k,12 and
τ̂k,13 are dominant. In unyielded flow regions, the stress is indeterminate, and the deviatoric
stress components need not be scaled according to the prescribed velocity and length-scales.
Consider for example, a horizontal pipe with the two fluids separated by a vertical interface.
Across this interface the density difference implies a static pressure difference, which must be
balanced by a difference in̂τk,11. More generally, any interface in the transitional end regions
that is perpendicular to the pipe axis can generate a static pressure differential that, in the limit
of a static flow, implieŝτk,11 ∼ 1ρ̂ĝD̂. Since also

τ̂k,11+ τ̂k,22+ τ̂k,33 = 0, (8)

1 Often δ � 1 is an overly restrictive assumption on̂L for long-thin flows of Bingham fluids. Yielded flow
regions typically have a layer width much smaller than the pipe diameterD̂. A much shorter axial length-scale is
therefore needed for the flow to be considered as near-uniaxial.
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by definition of the deviatoric stress tensor, the scaling assumed2 is as follows

τk,ij ≡ τ̂k,ij

1ρ̂ĝD̂
, i, j 6= 2,3; τk,23 ≡ τ̂k,23

1ρ̂ĝL̂
, (9)

2.1. LEADING-ORDER MODEL

Following the above scaling, the dimensionless field equations forx ∈ Vk are

φkû
2∗

ĝL̂

du1

dt
= − ∂p

∂x1
− (φk − φm) cosβ + ∂τk,12

∂x2
+ ∂τk,13

∂x3
+ δ ∂τk,11

∂x1
, (10)

δ2φkû
2∗

ĝL̂

du2

dt
= − ∂p

∂x2
− (φk − φm)δ sin β + δ ∂τk,22

∂x2
+ δ2

[
∂τk,12

∂x1
+ ∂τk,23

∂x3

]
, (11)

δ2φkû
2∗

ĝL̂

du3

dt
= − ∂p

∂x3
+ δ ∂τk,33

∂x3
+ δ2

[
∂τk,13

∂x1
+ ∂τk,23

∂x2

]
, (12)

∂uj

∂xj
= 0. (13)

Neglecting terms ofO(δ) and making the following noninertial assumption

φkû
2∗

ĝL̂
� 1, (14)

the leading-order momentum equations are

cosβ − f = ∂τc,12

∂x2
+ ∂τc,13

∂x3
, x ∈ �c, (15)

−f = ∂τm,12

∂x2
+ ∂τm,13

∂x3
, x ∈ �m, (16)

f = f (x1), (17)

where�c and�m denote the cross-sectional areas of the pipe that are occupied by cement
and mud respectively. The parameter−f that appears above is the dimensionless modified
pressure gradient

f ≡ − ∂p
∂x1

. (18)

2 For the model onlyτk,23 is assumed to be small with respect to the other deviatoric stress components. This
is the consequence of the velocity and length-scaling. Without any such assumption onτk,23 the flow must be
considered fully three-dimensional, whereas the aim here is to take advantage of the near uniaxial nature of the
flow.
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Recall that the hydrostatic mud pressure has been subtracted from the pressure before scaling.
The modified pressure gradient in the cement is cosβ − f . Typically, its expected thatf ∈
[0, cosβ] so that the mud is pushed up the incline and the cement down the incline.

The interception of the interface with the cross-section is denoted0i , with normal in the
pipe cross-section,n = (δn1, n2, n3). Leading-order stress continuity conditions on0i are

pm + n2
2τm,22+ n2

3τm,33 = pc + n2
2τc,22+ n2

3τc,33, (19)

τc,22− τc,33 = τm,22− τm,33, (20)

n2τc,12+ n3τc,13 = n2τm,12+ n3τm,13. (21)

These conditions come simply from continuity ofn · σ k across the interface. The velocity is
continuous across0i and on the walls the velocity satisfies

u = 0. (22)

2.1.1. Constitutive equations and closure
The dimensionless plastic viscositiesµk, are defined in terms of the dimensional model para-
meters by

µk = µ̂kû∗
1ρ̂ĝD̂2

, k = c,m. (23)

Equations (15) and (16) are similar to the leading-order model derived and analysed in [12–
13]. This leading-order model is an axial flow model, in which the velocity componentu1

is to be determined. The aim of the analysis here is not to find solutions to the axial flow
problem, but instead to find practical conditions under which only the trivial solutionu1 = 0
exists. The leading-order momentum equations also do not determine the deviatoric stress
componentsτk,ii . By assumption, spatial variations in eachτk,ii in the directionx1 areO(δ)
smaller than those in the nonaxial directionsx2 andx3. A general leading-order form for the
termsτk,ii, in any cross-section withinV , is therefore:τk,ii = τk,ii(x2, x3)+O(δ), i = 1,2,3.
Defineτk,n(x2, x3) on each pipe cross-section by

τk,n(x2, x3) ≡ 1
2[τ 2

k,11+ τ 2
k,22+ τ 2

k,33]1/2. (24)

The functionτk,n(x2, x3) is regarded as data for the problem. It is supposed thatτk,n(x2, x3) is
continuous within�k and that (19) and (20) are satisfied. Additionally, only thoseτk,n(x2, x3)

are considered

τk,n(x2, x3) 6 τk,Y − ξ, (25)

for someξ > 0, i.e. it is assumed that the stressesτk,n generated at the ends ofV are
insufficient alone to allow the fluids to yield and flow inV .

To understand the effect of imposing a stress distributionτk,n(x2, x3) on the flow, con-
sider the (dimensionless) rate of strain of the three-dimensional problem, within�, i.e. γ̇ (u).
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Firstly, consider wherėγ (u)� δ. In this region the gradients of the axial velocity component
dominate and

γ̇ (u) ∼ γ̇ (u1) ≡
[(
∂u1

∂x2

)2

+
(
∂u1

∂x3

)2
]1/2

. (26)

The leading-order deviatoric stresses are

τk,1j =
[
µk + τk,Y

γ̇ (u1)

]
∂u1

∂xj
, k = c,m, j = 2,3. (27)

Secondly, consider wherėγ (u) ∼ δ, but γ̇ (u) 6= 0. Here

τk,1j =
[
µk + τ̃k,Y (x2, x3)

γ̇ (u1)

]
∂u1

∂xj
, k = c,m, j = 2,3, (28)

where

τ̃k,Y (x2, x3) ≡ τk,Y γ̇ (u1(x2, x3))

γ̇ (u(x2, x3))
. (29)

It is noted from (25) that in this region,̇γ (u1) 6= 0 and

ξ +O(δ) < τ̃k,Y (x2, x3) 6 τk,Y . (30)

Finally, consider the region wherėγ (u) = 0, implying also thaṫγ (u1) = 0. In this region the
deviatoric stresses are indeterminate.

Combining the above analysis, leading-order constitutive equations can be defined every-
where by

γ̇ (u1) > 0⇒


τk,12 =

[
µk + τk,R(x2, x3)

γ̇ (u1)

]
∂u1

∂x2
, k = c,m,

τk,13 =
[
µk + τk,R(x2, x3)

γ̇ (u1)

]
∂u1

∂x3
, k = c,m,

(31)

and

γ̇ (u1) = 0⇔ τk 6 τk,R(x2, x3), k = c,m, (32)

where thereducedyield stressτk,R(x2, x3) will be defined by eitherτk,Y or τ̃k,Y (x2, x3),
depending oṅγ (u).

Formally, definingτk,R(x2, x3) depends on the solution to the three-dimensional problem,
which in general can not be constructed from the axial velocity component (but see [14] for
an asymptotic analysis of flow in a narrow eccentric annulus). Thus, for simplicity only the
closureτk,R = τk,R(x2, x3) is considered,i.e. a form of linearisation (although the problem
still remains nonlinear). The important thing to note is that the effect of the imposed stresses
τk,n(x2, x3) is to effectivelyreducethe yield stresses toτk,R(x2, x3), whereτk,R(x2, x3) > 0,
due to (25), andτk,R(x2, x3) can be expected to be continuous in each�k.
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2.1.2. Problem summary
To summarise the result of the foregoing derivation, the problem has been reduced to a set
of leading-order equations for the axial component of velocity,u1. The classical formulation
of this problem consists of Equations (15) and (16), the constitutive relations (32) and (31),
boundary condition at the wall

u1 = 0, (33)

and the following continuity conditions on each fluid-fluid interface

u1 = uint, (34)

n2τc,12+ n3τc,13 = n2τm,12+ n3τm,13, (35)

(i.e.u1 = uint from both sides of the interface). The data prescribed for this problem consists
of the two fluid domains�c and�m, the two fluid viscosities,µk > 0, k = c,m, the two yield
stressesτk,Y > 0, and the two reduced yield stress functionsτk,R, k = c,m, which are strictly
positive, continuous and bounded (byτk,Y ), in each domain.

2.2. VARIATIONAL FORMULATION

Due to the uncertain forms ofτk,R and�k, k = c,m, general results for the classical for-
mulation are hard to derive. Instead a variational formulation is considered. For simplicity
of notation, the subscript onu1 is dropped and the coordinates are redefined(x, y, z) =
(x1, x2, x3). For arbitraryu, v ∈ H 1

0 (�) define the following norms and functionals

ak(u, v) =
∫
�k

∂u

∂y

∂v

∂y
+ ∂u
∂z

∂v

∂z
d�, k = c,m,

jk(v) =
∫
�k

τk,R

[(
∂v

∂y

)2

+
(
∂v

∂z

)2
]1/2

d�, k = c,m,

a0(u, v) = ac(u, v)+ am(u, v),
a(u, v) = µcac(u, v)+ µmam(u, v),
j (v) = jc(v)+ jm(v),

Qk(v) =
∫
�k

v d�, k = c,m,

Q(v) = Qc(v)+Qm(v),

‖v‖L1(�) =
∫
�

|v|d�,

‖v‖2
L2(�)
=
∫
�

v2 d�,
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‖v‖2
H1(�)

= ‖v‖2
L2(�)
+ a0(v, v),

L(v) = fQ(v)− cosβQc(v) = −(cosβ − f )Q(v)+ cosβQm(v).

The variational problem for the axial velocityu is to findu ∈ H 1
0 (�) satisfying

a(u, v − u)+ j (v)− j (u) > L(v − u), ∀v ∈ H 1
0 (�), u ∈ H 1

0 (�). (36)

The derivation of (36) from the classical problem proceeds almost exactly as in [12] and this
is not restated. Two different problems may be considered

(1) General flow: In this problem,f is a specified constant and the solution only involves
determiningu satisfying (36).

(2) Exchange flow: In this problem,f ∈ [F1, F2] is a constant parameter, which must be
determined withu as part of the solution, in such a way that both (36) and

Q(u) = 0, (37)

are satisfied.

Physically, for the exchange flow problem there will be zero net volumetric flux in the axial
direction. The question then is which axial pressure gradientf allows this to happen. Solutions
to the general flow problem that do not satisfy (37) correspond to flows for which a nonzero
volumetric flow rate is pumped along the pipe. These flows also have practical relevance, but
for the problem at hand the ends of the pipe (oil well) are closed and (37) must be satisfied.
Both problems are stated since it is usually necessary to first solve the general flow problem
in order to solve the exchange flow problem.

3. Properties of the axial velocity solution

Although the yield stresses vary with(y, z) in (36), the underlying problem is not much
changed from that with constant yield stresses, which has been analysed extensively in [12–
13]. The results in this section are proven straightforwardly by the same methods as in either
of [12–13] for the constant yield stress problem.

THEOREM 1. The variational inequality

a(u, v − u)+ j (v)− j (u) > L(v − u), ∀v ∈ H 1
0 (�), u ∈ H 1

0 (�),

has a unique solution.

3.1. DEPENDENCE OFu ON f

For f ∈ [F1, F2], denote byuf the solution to (36). The following three results give a con-
structive method for proving the existence of a solution to the exchange flow solution. The
simple methodology is to show first that the functionalQ(uf ) is continuous and increasing.
Secondly, if there is an intervalf ∈ (F1, F2) withQ(uF1) < 0 andQ(uF2) > 0, there must be
a solution to the general problem satisfying (37), i.e. a solution to the exchange flow problem.

LEMMA 1. The functionf → uf is Lipschitz continuous fromf 7→ H 1
0 (�).
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LEMMA 2. For f1 < f2 with f1, f2 ∈ [F1, F2], eitherQ(uf2) > Q(uf1) or uf2 = uf1. If
uf2 = uf1, thenQ(uf2) = Q(uf1) = 0.

LEMMA 3. There exists a solution to the exchange flow problem for somef ∈ (F1, F2) if
and only if

cosβQm(uF1) < a(uF1, uF1)+ j (uF1), (38)

− cosβQc(uF2) < a(uF2, uF2)+ j (uF2), (39)

are satisfied, or equivalently,Q(uF1) < 0 andQ(uF2) > 0.

Having established that an exchange flow exists, the solutions have some interesting proper-
ties. Let(f ∗, uf ∗) solve the exchange flow problem for cosβ > 0. First of all, and perhaps
obviously, the volume flux in the (lighter) mud phase is positive and that in the cement phase
is negative. Secondly, the pressure gradientf ∗ appears to minimise the viscous dissipation
functional.

PROPOSITION 1.Qm(uf ∗) > 0 andQc(uf ∗) 6 0 with Qm(uf ∗) > 0 andQc(uf ∗) < 0
unlessuf ∗ = 0.

LEMMA 4. The functionf = a(uf , uf ) is decreasing forf < f ∗ and is increasing for
f > f ∗. If f ∗ ∈ (F1, F2) is the unique value for which the exchange flow constraint is
satisfied, thenf = a(uf , uf ) is strictly decreasing forf < f ∗ and is strictly increasing for
f > f ∗.

3.2. DEPENDENCE OFu ON THE REDUCED YIELD STRESSES

For fixed f ∈ [F1, F2], let (τc,R1, τm,R1) and (τc,R2, τm,R2) be strictly positive, bounded
continuous functions and denote byuτ1 anduτ2 respectively, the two solutions of (36) cor-
responding to the two different reduced yield stress functions. Since these functions are only
defined on their respective fluid domains, define the following norm

‖(τc,R1, τm,R1)− (τc,R2, τm,R2)‖L2(�) ≡ ‖τc,R1 − τc,R2‖L2
�c
+ ‖τm,R1 − τm,R2‖L2

�m
. (40)

We show that the solution varies continuously with the reduced yield stresses and also that
the solution (in fact the functionala(uτ , uτ )) decreases as the size of the reduced yield
stresses increases. The imposed stressesτk,n(y, z) are bounded and the monotonicity result
(see Lemma 6) indicates that for sufficiently large yield stresses there should be no flow, as
is intuitive. To find the limit, an upper bound for the imposed stressesτk,n(y, z) is used. This
upper bound defines minimum values forτk,R(y, z). The problem with constant (minimum)
yield stresses has been analysed in [13] and bounds for there to be no flow have been estab-
lished. By this methodology, we are therefore able to give an estimate for the size of yield
stresses necessary to giveu = 0.

LEMMA 5. There exist strictly positive constantsC1 andC2 such that

a(uτ1 − uτ2, uτ1 − uτ2) 6 C1‖(τc,R1, τm,R1)− (τc,R2, τm,R2)‖2L2(�)
, (41)
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‖uτ1 − uτ2‖H1(�) 6 C2‖(τc,R1, τm,R1)− (τc,R2, τm,R2)‖L2(�). (42)

Proof. Inequality (36) holds foru = uτ1, v = uτ2 as well as foru = uτ2, v = uτ2. Adding
the two inequalities gives

a(uτ2 − uτ1, uτ2 − uτ1) 6
∫
�c

[τc,R1 − τc,R2][γ̇ (uτ2)− γ̇ (uτ1)]d�

+
∫
�m

[τm,R1 − τm,R2][γ̇ (uτ2)− γ̇ (uτ1)]d�.

Using the convexity oḟγ (·) and then the Cauchy–Schwarz inequality

a(uτ2 − uτ1, uτ2 − uτ1) 6
∫
�c

|τc,R1 − τc,R2|γ̇ (uτ2 − uτ1)d�

+
∫
�m

|τm,R1− τm,R2|γ̇ (uτ2 − uτ1)d�

6 ‖τc,R1− τc,R2‖L2
�c
[ac(uτ2 − uτ1, uτ2 − uτ1)]1/2

+‖τm,R1− τm,R2‖L2
�m
[am(uτ2 − uτ1, uτ2 − uτ1)]1/2

6 ‖(τc,R1, τm,R1)− (τc,R2, τm,R2)‖L2(�)

×[a0(uτ2 − uτ1, uτ2 − uτ1)]1/2.
Thus,C1 = 1/min{µk}. The second part of the theorem results directly from the ellipticity of
a0(·, ·), consequently also that ofa(·, ·), and the continuity result fora(·, ·).

For the following result let(τc,R , τm,R) be strictly positive, continuous functions, bounded
from zero by constants(τc,R,min, τm,R,min). Assuming cosβ > 0, suppose that the exchange
flow problems corresponding to(τc,R1, τm,R1) = (τc,R , τm,R) and(τc,R2, τm,R2) = (τc,R,min,
τm,R,min) have the solutions(f ∗1 , uτ1) and(f ∗2 , uτ2), respectively.3

LEMMA 6. For exchange flow solutions(f ∗1 , uτ1) and(f ∗2 , uτ2) as described above

a(uτ1, uτ1) 6 a(uτ2, uτ2).

Proof.First note in (36) that for any exchange flow solutionu

L(u) ≡ cosβQm(u),

and the test space for the variational problem can be reduced to9(�)

9(�) ≡ {v ∈ H 1
0 (�):Q(v) = 0}.

In place of (36), the variational problem is as follows

a(u, v − u)+ j (v)− j (u) > cosβQm(v − u), ∀v ∈ 9(�), u ∈ 9(�). (43)

3 The proof of Lemma 6 also follows through with the conditionτk,R1(y, z) > τk,R2(y, z), ∀(y, z) ∈ �k , so
thata(uτ , uτ ) decreases with the size of (reduced) yield stresses.
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A solutionuτ to (43) satisfies

a(uτ , uτ )+ j (uτ ) = cosβQm(uτ ),

(putv = 0 and v= 2uτ into (43) and add). The problem (43) is also equivalent to minimising
the functionalJτ (v)

Jτ (v) ≡ 1
2a(v, v)+ j (v)− cosβ Qm(v), v ∈ 9(�), (44)

seee.g.[15, Chapter 1, Sections 1.1 and 1.2] and [3, Chapter 1]. Consequently

−1
2a(uτ1, uτ1) = Jτ1(uτ1), −1

2a(uτ2, uτ2) = Jτ2(uτ2).
For arbitraryv ∈ 9(�),

Jτ2(v)− Jτ1(v) =
∫
�c

[τc,R2− τc,R1]γ̇ (v)d�+
∫
�m

[τm,R2− τm,R1]γ̇ (v)d� 6 0.

Consequently

−1
2a(uτ1, uτ1) = Jτ1(uτ1) = inf

v∈9(�)
Jτ1(v) 6 inf

v∈9(�)
Jτ2(v) = Jτ2(uτ2) = −1

2a(uτ2, uτ2).

4. Stress minimisation principles

As well as the rate of strain minimisation principle (44), Bingham fluid flows such as those
considered here will typically satisfy a stress minimisation principle. A three-dimensional
version of this minimisation principle for the slow flow of a single Bingham fluid is derived
in [16]. Whilst the rate of strain minimisation is equivalent to the variational formulation and
yields a unique solution, the stress minimisation principle does not in general yield a unique
stress field. Thus for example, Beriset al.[17] employ the stress minimisation principle simply
as a check on the accuracy of their numerical method. The three-dimensional stress minim-
isation principle in [16] can be straightforwardly generalised to slow flows of two Bingham
fluids that satisfy stress continuity conditions at the interface. Thus, the expression

K(τ̃ ) ≡ 1

µc

∫
Vc

[|τ̃ − τc,Y | + τ̃ − τc,Y ]2 dV

+ 1

µm

∫
Vm

[|τ̃ − τm,Y | + τ̃ − τm,Y ]2 dV, (45)

is minimised over all admissible deviatoric stress tensors,τ̃ , (i.e. τ̃ should satisfy the slow
flow equations in each fluid domain, stress continuity conditions at the interface and have zero
traction sufficiently far from the flow region, see [16]).

Whilst the above is a quite general result, a stress minimisation principle may also be
derived for the shear flows considered in the previous section, which are uniaxial but not neces-
sarily slow. For fixed�c and�m, separated by piecewise smooth boundaries with associated
normal vectorn = (ny, nz), let a shear stress vectorτ̃ (y, z)

τ̃ = (τ̃y, τ̃z),
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be calledadmissibleif it satisfies

cosβ − f̃ = ∂τ̃y

∂y
+ ∂τ̃z
∂z
, (y, z) ∈ �c, (46)

−f̃ = ∂τ̃y

∂y
+ ∂τ̃z
∂z
, (y, z) ∈ �m, (47)

[nyτ̃y + nzτ̃z]c = [nyτ̃y + nzτ̃z]m, (y, z) ∈ 0i, (48)

for a constantf̃ . In (48) the subscripts denote the limiting values at each side of the interface
0i.

For an admissible shear stress vectorτ̃ (y, z) and given positive yield stress functionτ̃R(y, z),
(assumed continuous on each fluid domain,�k), define a rate of strain vector,˜̇γ = ( ˜̇γ y , ˜̇γ z),
by

˜̇γ j =


1

µk

[
1− τ̃R

τ̃

]
τ̃j , τ̃ > τ̃R, (y, z) ∈ �k, k = c,m, j = y, z,

0, τ̃ 6 τ̃R, (y, z) ∈ �k, k = c,m, j = y, z,
(49)

where

τ̃ ≡ [τ̃ 2
y + τ̃ 2

z ]1/2. (50)

The rate of strain˜̇γ can clearly be integrated to give an axial velocity. However, there is
no guarantee that such a velocity will be continuous at the interface or satisfy the boundary
conditions (22). Note that a classical solution to the exchange flow problem has the associated
admissible shear stress vectorτ

τ = (τy, τz) ≡ (τk,xy, τk,xz), (y, z) ∈ �k, k = c,m, (51)

see equations (15), (16) and (21). Suppose that a solutionu to the exchange flow problem
exists. Note that

0=
∫
�c

∂u

∂y
(τy − τ̃y)+ ∂u

∂z
(τz − τ̃z)d�+

∫
�m

∂u

∂y
(τy − τ̃y)+ ∂u

∂z
(τz − τ̃z)d�. (52)

This follows from Green’s theorem in the plane, equations (46–48) and the exchange flow
constraint (37). Note that the value off̃ and the positive functioñτR(y, z) that are associated
with the vectorτ̃ (y, z) in (52) are completely arbitrary.

LEMMA 7. Let u be a classical solution to the exchange flow problem, with solution shear
stress vectorτ . Amongst all admissible shear stress vectorsτ̃ , the solution shear stress vector
τ minimises the expression

K(τ̃ ) ≡ 1

µc

∫
�c

[|τ̃ − τ̃R| + τ̃ − τ̃R]2 d�+ 1

µm

∫
�m

[|τ̃ − τ̃R| + τ̃ − τ̃R]2 d�, (53)
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for all choices ofτ̃R for which

τ̃R(y, z) 6 τk,R(y, z), (y, z) ∈ �k: k = c,m. (54)

Proof.Consider the expressionK(τ̃ )−K(τ ) and add twice equation (52) to give

K(τ̃ )−K(τ ) =
∑
k=c,m

1

µk

∫
�k

I (y, z)d�,

where

I (y, z) = 1
4[|τ̃ − τ̃R| + τ̃ − τ̃R]2− 1

4[|τ − τk,R| + τ − τk,R]2+ 2µk
∑
j=y,z

γ̇j (τj − τ̃j ).

Four cases must be considered, to show thatI (y, z) > 0 in�.

(1) τ̃ (y, z) 6 τ̃R(y, z) andτ(y, z) 6 τk,R(y, z),
(2) τ̃ (y, z) > τ̃R(y, z) andτ(y, z) 6 τk,R(y, z),
(3) τ̃ (y, z) 6 τ̃R(y, z) andτ(y, z) > τk,R(y, z),
(4) τ̃ (y, z) > τ̃R(y, z) andτ(y, z) > τk,R(y, z).

In case 1,I (y, z) ≡ 0. For case 2,̇γj = 0 and

I (y, z) = 1
4[|τ̃ − τ̃R| + τ̃ − τ̃R]2 > 0.

For cases 3 and 4, using (49), we writeI (y, z) as

I (y, z) = 1
4[|τ̃ − τ̃R| + τ̃ − τ̃R]2− 1

4[|τ − τk,R| + τ − τk,R]2

+2
[
1− τk,R

τ

] ∑
j=y,z

τj (τj − τ̃j ).

For case 3, this becomes

I (y, z) =
[
1− τk,R

τ

]τ 2 + ττk,R − 2
∑
j=y,z

τj τ̃j


>
[
1− τk,R

τ

] [
τ 2+ ττk,R − 2τ τ̃

]
> 0,

where the Cauchy–Schwarz inequality has been used between lines 1 and 2. Finally, for
case 4

I (y, z) = [τ̃ − τ̃R]2− [τ − τk,R]2+ 2τ 2− 2ττk,R − 2
[
1− τk,R

τ

] ∑
j=y,z

τj τ̃j

=
∑
j=y,z

(τ̃j − τj )2− 2
τk,R

τ

τ̃ τ − ∑
j=y,z

τj τ̃j

+ [τ̃ − τ̃R]2 − [τ̃ − τk,R]2

>
∑
j=y,z

(τ̃j − τj )2− 2
τk,R

τ

τ̃ τ − ∑
j=y,z

τj τ̃j
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>
∑
j=y,z

(τ̃j − τj )2− 2

τ̃ τ − ∑
j=y,z

τj τ̃j


= [τ̃ − τ ]2 > 0.

5. Conditions for u= 0

In accordance with the simple dimensional analysis in the introduction, the aim here is to
derive a surface in the positive octant of the three-dimensional(β, τc,Y , τm,Y )-space, which
defines whereu = 0 for the type of flows considered. The methodology used is not rigorous,
but is believed to give a conservativeengineering estimatefor such a surface. This is confirmed
by experiment (Section 6) and is considered quite suitable for application.

The stress minimisation principles in Section 4 effectively mean that the flow will not yield
unless it has to. The axial shear flow problem that has been considered in [12–13] corresponds
to the problem of Section 3 with imposed stressesτk,n(y, z) = 0. This problem is perfectly
well defined and, together with the three-dimensional stress minimisation principle (45), this
suggests that there is no mechanism for the generation of nonzeroτk,n(y, z) within V , for the
flows considered in this paper. Thus, generation of nonzeroτk,n(y, z) is associated with the
transitional end regions of the volumeV . The main characteristic of these end regions is that
the interface is no longer near-parallel to the pipe axis. For an interface perpendicular to the
pipe axis, continuity of normal stresses implies

−pc + τc,xx = −pm + τm,xx, (55)

and the difference in static pressures on either side of the interface suggests that

pc − pm ∼ sinβ. (56)

Thus, where the interface is perpendicular to the pipe axis, an estimate of form

Acτc,n,max+ Amτm,n,max6 sinβ, (57)

should be valid for the maximum stresses (whereAc andAm are given constants). By con-
sidering the static deviatoric stress distribution in an inclined uniform slot, in which the two
fluids are separated by a flat interface, perpendicular to the axis of the slot, it is possible to
derive the estimate

1
4[τc,n,max+ τm,n,max] 6 sinβ, (58)

and it seems reasonable to apply this same estimate to the pipe geometry (i.e., with a pipe
diameter equal to the slot width), for which it will certainly be conservative.

If τk,n 6 τk,n,max < τk,Y for each fluid, then the flow will not yield if the flow with
(minimum) constant reduced yield stressesτk,R,min defined by

τk,R,min ≡ [τ 2
k,Y − τ 2

k,n,max]1/2, (59)
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Figure 5. The no-flow surfaceτY = τY,0(θ, β),
shown in the positive octant of the three-
dimensional(β, τc,Y , τm,Y )-space.

does not yield. This follows from Lemma 6 (and for a classical solution see also Lemma 7).
Constant yield stress stratified axial exchange flows in a pipe are considered in [12–13]. Con-
sidering all simply connected�k that touch the walls of the pipe, the constant yield stress axial
exchange flow will not yield if the magnitude of the vector(τc,R,min/ cosβ, τm,R,min/ cosβ)
exceeds the curve shown in Figure 4, see [13] for a derivation.

This result is not justified rigorously for completely general�k, since there exists the
possibility of a very large yield stress fluid (e.g., a solid), moving down the centre of the pipe
whilst never touching the walls. In reality such a situation is not observed to evolve from initial
conditions such as those in Figure 1. Firstly, the larger yield stress fluid appears to be difficult
to displace from the walls. Secondly, even if such a flow is initiated, gravity tends to force the
heavier fluid into contact with the lower walls and the lighter fluids into contact with the upper
wall.

Define a polar coordinate system(τY , θ) in the positive quadrant of the yield stress plane,
by

τY ≡ [τ 2
c,Y + τ 2

m,Y ]1/2, tan
(π

4
− θ

)
≡ τm,Y

τc,Y
. (60)

The curve (58) and that in Figure 4 can be written as

[τ 2
c,n,max+ τ 2

m,n,max]1/2 = τn,Y (θ) sinβ, (61)

[τ 2
c,R,min + τ 2

m,R,min]1/2 = τs,Y (θ) cosβ (62)

there is no simple analytical expression forτs,Y (θ), see [13]. When it is assumed that, if the
maximum normal deviatoric stress terms lie on (61), to ensure thatu = 0, it will be sufficient
for the minimum reduced yield stresses to lie on the curve (62), the estimates for the diagonal
and nondiagonal deviatoric stresses can be combined to give the surface in Figure 5. This
surface is defined simply by

τY = τY,0(θ, β) ≡ ([τn,Y (θ) sinβ]2 + [τs,Y (θ) cosβ]2)1/2. (63)
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For values of(τc,Y , τm,Y ) which lie above the curveτY = τY,0(θ, β), it is expected that a flow
will not be initiated.

6. Experimental comparison

A series of static stability experiments were performed to compare with the surface (63). The
basic experiment performed consists of a long closed-ended pipe half-filled with each of two
fluids, separated by an interface which is perpendicular to the pipe axis. The heavier fluid
was positioned above the lighter fluid and motion of the fluid-fluid interface was observed.
Any movement of the fluid-fluid interface was regarded as evidence of instability. A range of
pipe diameters, pipe inclinations, densities and rheologies were tested. A single experiment
consists of testing one set of rheological parameters for a fixed geometry, pipe inclination
and fluid densities. Experiments with a given geometry and density difference were repeated
with progressively larger yield stress fluids until the interfaces were found to be stable. Each
sequence of experiments thus leads to a single experimental point which lies on the marginal
stability surface for an interface that is perpendicular to the pipe axis.

Two types of fluid were used. When a fluid without a yield stress was required, a Xanthan
gum solution was used. At very low shear rates, less than 10−3 s−1, this is approximately New-
tonian but it becomes shear thinning at higher shear rates. For fluids with a yield stress, RDS
grade Laponite suspension was used. Laponite is an synthetic clay mineral related to natural
clays such as hectorite or bentonite which have a similar disc shaped structure but are an order
of magnitude larger, (the general formula for Laponite is Na0·7[(Mg5·5Li0·3Si8)O20(OH)4]0·7).
One advantage of using Laponite suspensions as an experimental fluid is their transparency.
A second advantage is that Laponite has a yield stress which is to a large extent controllable
by varying either the time which the suspension is allowed to gel in a static condition, or the
concentration of Laponite in the suspension, or by addition of salts, (CaCl2). The suspensions
were also weighted with Barite to control the fluid density. All experiments were conducted
using a 6 wt percent suspension of Laponite which was allowed to fully hydrate before the
addition of the required concentration of CaCl2.

For small diameter pipes (50·8 mm and 101·6 mm) the pipes were half-filled with the
heavier fluid when vertical. The lighter fluid was then placed on top, taking care not to disturb
the interface. The upper end cap of the pipe was conical, ensuring complete filling of the
pipe. The tube was kept static in the stable vertical position until it was estimated that the
required yield stress had developed. It was then inverted to the required inclination and left
resting against an inclined board for observation of the interface position. Measurements of
the yield stresses with a vane rheometer were made simultaneously on samples taken from the
two fluids at the moment of inversion. In this way, a good estimate was made of the fluid yield
stresses on both sides of the interface at the time when the interface stability was observed.
For large diameter pipes (203·2 mm), quick inversion through more than 90 degrees was not
possible. The vertical position was found to be more stable than an inclined position for the
particular interface configuration used. Therefore, while keeping the pipe vertical, the heavier
fluid was injected slowly on top of the lighter (yield stress) fluid, using a tool which diverted
the flow to the sides of the pipe. After the estimated waiting time, the tube was inclined as
required. This procedure seemed to work fairly well, in that when the interface failed at the
larger deviations, fluid motion was rapid, but the yield stresses developed before injection of
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degrees to the pipe axis. Also shown are the results of two sequences of experiments with interface inclined at 45
degrees to the pipe axis.

the denser fluid were sufficient to prevent motion for the (mechanically unstable) horizontal
interface in the vertical pipe.

6.1. RESULTS

A number of sequences of experiments were conducted, each giving rise to values(τc,Y , τm,Y ),
lying on the (experimental) marginal stability surface for the perpendicular fluid-fluid inter-
face. It was also possible to make some estimate of the maximum measurement error in(τc,Y ,
τm,Y ). Figure 6(a) shows the experimental yield stresses on the marginal stability surface,
together with error bars. The lines drawn in Figure 6(a) are sections through the surface (63)
at 10 degree intervals. For more detail, Figure 6(b) shows the same comparison, but made with
only the data at 10 degree and 45 degree pipe inclinations from vertical. It is re-emphasised
that each point plotted in Figure 6 corresponds to whole a sequence of experiments.
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For all results in Figure 6 the theoretical prediction is conservative in comparison
with experimental results. To study the degree of conservatism, Figure 7 plots the ratio of
τY,exp/τY,0(θ, β) for each of the experimental points, (τY,exp being the modulus of the experi-
mentally measured yield stresses). The experimental modulus varies between about 20 and 70
percent of the theoretical value as the pipe inclination varies from vertical to horizontal. Also
shown in Figure 7 are the results of two sequences of experiments with interface inclined at
45 degrees to the pipe axis. One sequence of experiments was conducted in a horizontal pipe,
the other in a vertical pipe.

7. Discussion

The results shown in Figures 6 and 7 indicate clearly that characterisation of the (mechanically
unstable) static state, for a fixed interface configuration, in terms of a marginal stability surface
in the (β, τc,Y , τm,Y )-space is both experimentally feasible and also sensible, confirming the
simple dimensional analysis. The theoretical surfaceτY = τY,0(θ, β), in all cases gives a
conservative prediction of the yield stresses required to keep the perpendicular interface static.
This is to be expected and the experimental comparison should therefore be regarded as a
partial validation of (63). There are a number of issues related to the conservatism of (63).

The approach taken in Section 5 has been to take a conservative estimate of the normal
deviatoric stresses and combine this with a conservative estimate of the shear stresses gener-
ated in the axial shear flow. The method of combining these estimates is somewhat heuristic,
but must be expected to yield a conservative prediction of conditions foru = 0 (e.g.along
any interface the maximum shear and normal stresses are unlikely to be generated in exactly
the same place, the individual estimates themselves will be conservative for many interfaces,
etc). Experimental comparison serves the purpose of indicating how conservative this pre-
diction will be for a given interface configuration. As discussed in Section 1, the problem
considered will be characterised by nonuniqueness of stable static interface configurations. For
the industrial application, fluid-fluid interface configuration is not controlled during a typical
cement plug placement operation. These two factors have motivated the theoretical approach,
i.e., for practical usage it is necessary to derive estimates are valid for a practically relevant
(and wide) class of possible interface configurations. This situation must be contrasted with
the experimental situation, where any experiment tests only one particular initial interface
configuration. For reasons of economy, it is not possible to testall interface configurations
for any large class of surfaces. Thus, comparison of the experimental results with (63) in
terms of a direct validation is not justified. Direct validation appears difficult. In [12–13]
exact mathematical solutions are derived for test example flows with constant yield stresses,
zero normal deviatoric stresses and geometrically simple interfaces. To engineer such flows
in a laboratory with non-Newtonian fluids and realistic (controllable) rheologies is extremely
difficult. In contrast, the flows in Section 6 are relatively easy to engineer in the laboratory,
but the mathematical theory (and hence comparison) is less exact.

The experimental scatter in Figure 7 is not severe and some sort ofcurvecould be fitted
(if this were a sensible exercise). This and Figure 6(b) suggest that the experimental values do
represent a marginal stability surface in(β, τc,Y , τm,Y )-space. It is supposed that if a similar
set of experiments was carried out for a different interface configuration, one would derive a
curvesimilar to the data in Figure 7, with similar scatter. Repeating this for a range of different
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interface configurations should (exhaustively) lead to a surface which is valid for an acceptably
wide range of initial interfaces. This type of exhaustive search is however impractical.

To explore the effect of interface inclination a little, the two series of experiments with
the interface at 45 degrees to the pipe axis were performed. These points are also plotted
in Figure 7, where they can be compared with the previous 90 degree interface inclination
results. For the horizontal pipe there is little effect, but for the vertical pipe the interface yields
much more readily, see Figure 7. Intuitively (and perhaps simplistically), it is thought that the
interface inclination which will be most unstable at different pipe inclinations, is that which is
parallel to the direction of gravity, whereas that which will be most stable lies perpendicular
to the direction of gravity. If this is true, then the perpendicular interface configuration tested
in the majority of experiments is the worst case when the pipe is horizontal and the best
case when the pipe is vertical, partly accounting for the variation in conservatism in Figure 7.
Considering a practically wide range of interface inclinations that might be realised, one could
infer that a surface in(β, τc,Y , τm,Y )-space at about 70 percent of the valuesτY = τY,0(θ, β),
would be a good estimate of the marginal stability curve. However, (63) remains a quite
reasonable conservative engineering estimate of the yield stresses required to maintain an
arbitrary interface statically stable between two Bingham fluids in a closed pipe.

Although there is a high confidence level in the validity of (63), this is a purely mechanical
estimate of sufficient(τc,Y , τm,Y ) to ensure thatu = 0. Nothing is said about the type of
interface and/or flow which is most likely to be observed when the initial interface is unstable.
As evidenced in Figure 7, different interface configurations can have vastly different stability
characteristics. This means that an initial interface may be unstable, but the fluids flow in such
a way that the resulting interface configuration is stable and the flow stops. This was observed
in some of the experiments. When the unstable flow continues, the interfaces generally tend to
elongate. Flows in the end regions remain three-dimensional and can be very interesting,e.g.
front steepening and the breaking off of regions of fluid from the main flow can be observed.
A phenomena which is not modelled in this paper, nor in the previous work [11–13], is dis-
placement at the pipe wall as the flow propagates. Generally, the fluid with the higher effective
viscosity is harder to displace from the wall, so that sometimes wall layers were created (i.e.,
the flow still becomes near uniaxial but the cross-sectional interface is multi-layered). When
the pipe is vertical, there is a tendency for the interface to yield in the centre of the pipe.
However, when the pipe is inclined (even slightly) the interface yields asymmetrically.

In applying the model and laboratory results to an oilfield situation, we encounter a number
of additional complexities. First of all, even though the Bingham fluid model is an extremely
common industry characterisation, the rheologies of cement slurries, drilling muds and other
wellbore fluids are not always described accurately by the model. For this process problem,
most relevant is that many of these fluids have a time and/or shear history dependant yield
stress, in oilfield terms they develop agel strengthover time. This is not the same as yield
stress, since the gel can bebrokenby initiating flow. However, the gel strength will act in the
same way as the yield stress in preventing flow,i.e., the gel strength must be exceeded by the
deviatoric stress in order for flow to be initiated. There are many problems with predicting
the gel strength of wellbore fluids thousands of metres below surface, where temperature,
pressure, fluid conditioning, solids content and fluid loss can all have significant effects.

A second constraint in applying these results comes from the various mixing phenomena
that are possible and which are poorly understood at present. The theory developed here
depends upon long-thin and/or slow flow assumptions,e.g., gentle placement of the cement
slurry, probably with a flow diverter. Frequently, the flow is neither diverted nor slow during
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placement. There then exists the possibility of mixing downhole, which might effectively
reduce the buoyancy gradient, allowing mechanical stability at much smaller values ofτ̂k,Y .
Similarly, chemical incompatibility between cement slurries and drilling muds is not uncom-
mon. This can have the effect ofviscosifyinga thin region close to the interface. Indeed there
are a range of complex phenomena which remain to be studied.

Perhaps the simplest sure way to apply the results here is in designing a fluid which devel-
ops a very large yield stress (or gel strength), very soon after placement. In many situations, a
viscous pillfluid will be placed underneath the cement slurry, of a density which lies between
the density of the drilling mud (below) and the cement slurry (above). This results in two
mechanically unstable interfaces. The density and rheology of the viscous pill fluid can be
designed to keep both interfaces stable, by applying (63) to each interface.
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